

Engineering Capstone Project

ESP8266 Wireless Bridge

Project Report

By

Anubhab de (7749260)

Sanjay ji Kshatriya (7843154)

Zankrut Shukla (7661200)

Table of Contents

 Page no

INTRODUCTION…………………………….….………..1

SPECIFICATION…………………………….….………..2

TIMELINE………………………………………..…...…..6

REASON AND ANALYSIS……………………………...43

CONCLUSION……………………………………………44

1

INTRODUCTION

ESP8266 is a popular low cost WIFI module that is used in most IOT based application. The purpose of this

project is to involve multiple ESP8266 modules and create a wireless bridge. This is done for testing the

feasibility of using these multiple ESP8266 wireless modules and extend the range of a local area network by

distances on the order of ∼1km.

A wireless bridge is an arrangement of devices (minimum two) that link two wired network segments,

wirelessly.ESP8266 wireless bridge is based on the idea that ESP8266 is capable of working in station and

AP mode at the same time. We are trying to use the module to send and receive the data and transmit it to

other ESP8266 module and create a bidirectional connection. This bidirectional connection between multiple

ESP modules will create a bridge and we can extend the range of a local area network by distances on the

order of ∼1km.

2

SPECIFICATION

The goal of this project is to create a Wireless bridge using ESP8266.

We have decided to code in Eclipse Kepler IDE on JDK 10 platform with Mingw GCC compiler.

We use the ESP8266 flasher to flash tool to flash our module

We are also going to use “Espressif” development kit to code for our ESP8266 module.

We need a serial terminal to check the output. We are using “Putty” 64 bit for out serial terminal.

All the software’s were decided as per our convince to complete our project.

ESP8266 Pin out FT232RL USB TTL

There are 3 modes of operation for ESP8266 module

1. Dual station mode

2. Soft Access Point mode

3. Station mode

In station mode the ESP8266 module will connect to main server or router and in soft AP mode module will

work as a router. We shall utilize both the modes for our project.

We should set up the tool chain and shall start programming the ESP8266 module. Using the ESP8266 flash

tool we shall first try to connect the module to network in STA mode. We connect the Arduino to USB TTL

and then to ESP8266 module. ESP8266 will be programmed through USB TTL.

We shall first connect one module to the server and test the system then will start adding mode modules as

per the distance requirement.

We have to search a lot for understanding the tools. We first thought of Linux for coding and debugging but

we do not have enough experience with Linux so we choose Eclipse to work on our code.

3

Specifications of ESP8266:

The following are the equipment that was provided for the project:

1. 1X Addicore breadboard prototyping kit.

2. 1X Strip of male to female headers.

3. 5X ESP8266 wireless modules.

4. 5X 3 AA battery holder.

5. 1X Arduino with USB cable.

6. ∼8 3.3v regulators with heatsink.

7. 1X USB serial TTL module (in case if we want to flash without Arduino).

4

FLOW DIAGRAM

SELECTING IDE

Learning about

various modes of

ESP operation

Flashing program

“Hello world” on

ESP

Configuring ESP

in station Mode

and connecting to

local network

Configure ESP 8266

in AP mode to

connect other device

to it

Connect ESP in

dual mode

Connect multiple

ESP in dual mode

and establish

connectivity

Calculate

latency by

using CRC

5

Circuit diagram

6

TIMELINE

We were assigned this project in the month of May 2018 with Mr. Robert Elder as our client by our advisor

Mr. Rudy.

Project Roles:

Anubhab will be our project leader and shall be working software part for the project. Sanjay will be

coordinating the projects and shall be working with Anubhab. Sanjay also will be debugging the issues while

doing his research about the components. Sanjay will also create reports for the project. Zankrut will be

working with circuits and shall be collecting the data for the project. Zankrut shall also be taking care of

documentation and ppt required for presentation of project.

The following are our activities that we followed in achieving the wireless bridge with ESP8266 modules.

Start Time: 20:48 Hrs Date: 05/17/2018

Circuit built for ESP8266 module

We started to done some basic research about ESP8266 and wireless bridge.

While going through the several videos and tutorials like the ones available on https://www. HYPERLINK

"https://www.nodemcu.readthedocs.io/en/master/en/" HYPERLINK

"https://www.nodemcu.readthedocs.io/en/master/en/" HYPERLINK

"https://www.nodemcu.readthedocs.io/en/master/en/"nodemcu.readthedocs.io/en/master/en/ and

https://www.youtube.com/watch?v=p06NNRq5NTU

We got to understand that the ESP8266 can be programmed to have three different modes of operations.

They are

• Station Mode : In this mode the ESP8266 acts as a device and connects to an existing access point

https://www.nodemcu.readthedocs.io/en/master/en/
https://www.nodemcu.readthedocs.io/en/master/en/
https://www.nodemcu.readthedocs.io/en/master/en/
https://www.nodemcu.readthedocs.io/en/master/en/
https://www.youtube.com/watch?v=p06NNRq5NTU

7

• Soft AP Mode : Access Point mode where the ESP itself acts as AP & other devices like Mobile can

connect to it.

• Dual or AT+CW Mode :In this mode the ESP can act both as a station as well as an access point at

the same time.

In order to build a wireless bridge using ESP8266 modules the ESP WiFi modules needs to be configured in

the Dual or AT+CW Mode as it needs to connect to the local network or another ESP8266 in the Slave

configuration while at the same time it should also act as a Master and provide access points for other ESP

modules or other devices to connect to it.

So, we decided to initially configure the ESP8266 in station mode and start flashing my firmware on the

device. To do that we had to download and setup a handful of softwares from the internet. We have chosen

Eclipse Keppler IDE to develop the firmware for the ESP8266 modules. Here are the list of the software’s

that we have downloaded :

• ECLIPSE KEPPLER (IDE) – This is the development environment that we have chosen to develop

my firmware for ESP8266. We have chosen this IDE because this IDE because Anubhab have

already had the experience of working using Eclipse Environment as we have used Atollic in the first

semester.\

• ESPRESSIF DEVELOPMENT KIT – This is the development tool provided by the manufacturers of

ESP8266 which can be easily integrated into Eclipse. It contains many basic examples to start

working with initially.

• MINGW GCC Compiler : This compiler is needed as windows doesnot have a built in GCC

compiler and we need a GCC Compiler to compile the C/C++ codes written Eclipse IDE.

• Java Development Kit 10 (JDK 10) – The JDK is required to provide the run-time environment for

eclipse.

• PUTTY 64-Bit – The putty provides the serial terminal needed to display the occurrence of events

and other information via the serial comm. port. This is required as the ESP8266 communicates

through TCP/IP protocol where its Rx/Tx and pins are used to send and receive data through the

serial port.

• ESP8266 Flasher : The ESP8266 flasher is a very essential tool which is needed to flash the

firmwares written in eclipse on to the device.

Flash tool for Esp8266

8

Putty” 64 bit for out serial terminal

Serial terminal

End Time: 00:45 Hrs

Start Time 15:10 Hrs Date: 05/18/2018

Today our primary aim will be to flash the ESP8266 using the ESP8266 flashing tool and write the

basic lines of code to print “Hello World” over the Serial Terminal while working on building the

circuit to flash the ESP8266.

The sample line of codes are provided in the ESPRESSIF DEVELOPMENT KIT to flash the ESP8266

module and display “Hello World” on the terminal.

Anubhab have imported the “Hello World” example provided by ESPRESSIF into Eclipse as my

starting point. The process is mentioned below:

9

Download ESPRESSIF DEVELOPMENT KIT from the link

https://www.espressif.com/en/support/download/sdk

Install the application and a folder by the name of ESPRESSIF will show up in the c:/program files

after successfully installation.

Then I opened Eclipse Keppler (Eclipse Oxygen can also be used) and create anew workspace.

Then click on File -> Import -> Existing Projects -> Select root directory -> Browse ->Local Disk (C:)

->Program Files -> Espressif -> Examples ->hello_world.

Import the entire project directory to Eclipse.

Then expanded the Hello_World project directory click on user folder and open the user_main.c file.

This was our starting point.

After this we started ESP Flashing Tool application and connected the ESP8266 to USB-TTL

converter.The Rx pin of ESP8266 is connected to the Tx pin of USB-TTL converter and vice-versa.

The GPIO 0 pin of ESP-8266 is grounded when flashing the firmware because that drives the ESP-

8266 into booting or flashing mode. The USB-TTL converter is connected to the laptop via USB cable.

Constant supply of 3.3V is provided from the micro-controller that is Arduino UNO provided to us by

Robert.

After starting up the ESP-Flashing Tool and supplying the power from the Arduino UNO evaluation

board the ESP-Flashing Tool detects the MAC address of the connected ESP8266 module.

After this we have followed the following steps to build my project in Eclipse IDE.

Click on Projects -> Build Project.

https://www.espressif.com/en/support/download/sdk

10

This sample code compiled without any errors . Then to reconfirm that the build is successful we

clicked on Project Explorer -> expand test1 -> firmware .

Inside the firmware folder we found two binary files with .bin extension. These are the files that are to

be flashed onto the core of ESP8266.

Once the flashing is done the ESP Flashing Tool will show flashing completed successfully.

The following are the settings of Putty:

Click on the Putty desktop icon ->select serial as connection type ->Serial line should be the comm.

Port in which the USB-TTL is connected ->set the speed to 115200.

The Hello World will print on the terminal with a delay 1000ms.

End Time: 23:50 Hrs.

11

 Start Time: 12:38 Hrs Date : 05/23/2018

After successfully being able to print Hello World and being able to take the initial step our next goal

is to configure ESP8266 in Station Mode so that it can connect to any available Local network. This

needs to be done so as to understand how ESP8266 connects to available Local network and how it

transmits data to the laptop via the local network.

We started going through the examples of how to configure the ESP8266 in Station Mode available

on the internet .These are the few links from which we have taken reference to develop my firmware:

http://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/station-class.html

http://fab.cba.mit.edu/classes/865.15/people/dan.chen/esp8266/

We also took reference from the example codes provided by ESPRESSIF.

My PC ->Local Disk (C:) ->Program Files -> Espressif -> Examples.

 Following are the lines of code that we have written to configure ESP8266 in Station mode.

We included all the header files that was in the sample program for the “hello_world”. Then SSID and

password is declared as character arrays. The ESP8266 is configured in station mode and is given a

static IP. The linker to store the instructions in flash memory is also declared.

http://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/station-class.html
http://fab.cba.mit.edu/classes/865.15/people/dan.chen/esp8266/

12

We have created a function called wifi_event_cb() which has the event as its parameter. We have used

switch-case statement to check the if the device is connected on the network, is disconnected from the

network, if the ESP received the IP of the local network which acts as the Master in this configuration

and to check if the authentication has changed.

13

We wrote a function called router_connect() to initialize connection to the router. The SSID and

Password that was defined above is used to connect to the wifi network. Then the IP, Gateway and net

mask are set for the ESP8266 to connect to the router.

While writing these lines of codes we got to learn about a few new header files and syntaxes.

• #include “os_type.h”-> this header file contains

• os_signal_t ETSSignal –> It provides the signal for occurrence of an event

14

• os_param__t ETSParam –> It contains the event parameters.

• os_event_t ETSEvent –> It posts an event to a task

• char SSID = “ “ -> It is used to define the name of the local network

• char PASSWORD = “ “ -> password for the local network is defined here.

• struct_station_config sc -> This is used to configure ESP8266 in station mode.

• struct ip_info staticip -> ESP is configured with a static IP

• ICACHE_FLASH_ATTR -> its an instruction for the linker to specify that the instructions are to

be stored in the flash memory instead of RAM

• wifi_set_opmode_current (STATION MODE) -> sets the current operation mode to Station mode.

• wifi_station_dhcpc_stop() –DHCP client is implemented with this command

What is DHCP?

Dynamic Host Configuration Protocol (DHCP) is a client/server protocol that automatically provides

an Internet Protocol (IP) host with its IP address and other related configuration information such as

the subnet mask and default gateway.

Reference : www.google.com

ERRORS WHILE DEBUGGING AND FLASHING:

• Static IP Config: The error message showed that “Type ‘IP’ couldnot be resolved”. Just by

commenting this line we solved the error.

• ESP Flashing Tool: Two files contains the same memory address “mem_check_fail”.

 We searched on www.google.com to find an answer to the error and found out that this occurs if

the two binary files are flashed at the same memory address.

http://www.google.com/
http://www.google.com/

15

Then we discovered while looking at the makefile that the memory address for the two binary files

are provided inside the makefile.

So we changed the memory address of the second file to 0x40000 from 0x00000 and it solved the

error. The process to do it is as follows:

Open NODEMCU FIRMWARE PROGRAMMER -> Config -> 0x40000

16

After solving the error we again re-built the project in Eclipse and it got built without any errors. Then

we used the ESP Flashing Tool to flash the firmware onto the ESP8266 module.

Then after opening putty and configuring it as mentioned earlier we got the desired output.

It connected perfectly to my home wifi network and we got the IP, the wifi name displayed on the

terminal.

End Time: 21:35 Hrs

Start Time: 19:30 Hrs Date: 25/05/2018

Our main focus for this week is to configure the ESP-8266 WiFi module in Soft AP mode in which it

will act as a router or host to other devices connected to it. To configure the ESP-8266 we referred to

the example line of codes provided in the ESPRESSIF .

My PC ->Local Disk (C:) ->Program Files -> Espressif -> Examples -> wifi-ap-tcp-client -> user ->

user_main.c

We opened this file in notepad++ because we are implementing the changes in the file we have already

written to configure the ESP-8266 in station mode.

To start with we called two separate structure from the ESP library in my existing lines of code to

configure the ESP-8266 in soft AP mode.

17

Struct ip_info softAP_staticip;

struct softap_config sap;

This structure contains the lines of codes necessary to initially configure the ESP-8266 module in soft

AP mode. we have set the set the authentication mode to AUTH_WPA_WPA2_PSK where

WPA_WPA2_PSK means WiFI Protected Access 2- Pre Shared Key. In this method the ESP-8266 is

setup as a router without an encryption key but rather with a plain English passphrase.

Anubhab is working with code to connect the module in dual mode while Sanjay and Zankrut are

working on soldering the components to the board.

Before soldering the components on board

We got the components and equipment’s for soldering the components to PCB from the tool room.

The PCB that was provided by Robert was not ideal from our purpose, so we got a PCB from tool

room.

We tested the circuit with the bread board first then we started soldering the components to the PCB.

We must drill few holes to the PCB as we planned to provide the PCB board with a stand. We used

the drill machine that was available in the lab.

18

Board to be soldered

We have soldered all the components and started testing

End Time: 00:45 Hrs Date: 26/05/2018

19

Start Time: 11:38 Hrs Date: 27/05/2018

Then we created two more events in the previously declared wifi_event_cb() function to display if any

device is connected or disconnected to the ESP module. The two events that created are

• EVENT_SOFTAPMODE_STADISCONNECTED to display if the device is disconnected

• EVENT_SOFTAPMODE_STACONNECTED to display if a device is connected.

After this we started writing the code to configure the TCP_IP port of the ESP-8266. The ESP-8266

has five TCP_IP port for communication between the host and the client. It has got five ports for

communication out of which I will be using four ports for the time being. We wrote the local function

LOCAL void ICACHE_FLASH_ATTR tcp_server_init() in which we setup the TCP_IP as following:

• tcp_conn.type = ESPCONN_TCP;

• tcp_conn.state = ESPCONN_MODE;

• tcp_conn,proto.tcp = &esptcp;

• tcp_conn.proto.tcp->local_port = 2345;

20

After this we compiled the entire code in ECLIPSE KEPPLER IDE and to our surprise it compiled

with two minor errors which was rectified in a couple of minutes.

The first error that popped up missing “;” or “}”. So we checked for the closing of braces and we found

that we have one missing and the error was solved.

The next one was due to not including the espconn.h header file

Then we again open the ESP-FLASHING TOOL and added the two binary files created during the

compilation of the code in ECLIPSE.

 After flashing of the firmware on the ESP module we launched putty in windows. Now for the IP

setup we declared the ip as 192.198.43.229 and the port as 2345.

Then we restarted the ESP-module again and on the terminal window we saw that it showed that it

was ready to be connected to and when checking for wifi devicces on mobile and laptop the ESP-8266

was available as an open wifi network.

On the hardware part we are still waiting to design a circuit on the pcb for flashing the firmware on

the NODEMCU that is ESP 8266.

End Time: 17:30 Hrs.

21

Start Time: 20:16 Date: 30/05/2018

Today in the lab I am helping out Zankrut in completing the soldering for the firmware flashing circuit

. The firmware flashing circuit diagram is provided below.

CIRCUIT DIAGRAM FOR FLASHING CIRCUIT

To build the circuit we used female headers and soldered them on the zero PCB so that we can easily

place and remove the ESP-8266 module and TTL-Driver. To solder the components we borrowed out

the soldering station from the tool room.

We have completed building the flashing during the class hours. Now we are going to meet Keiran

and collect the parts that we have ordered.

End Time: 16:00 Hrs

 Start Time: 13:05 Hrs Date: 15/06/2018

While we were suffering from viral fever my capstone group mate Sanjay was working on the

programming part to try and enable sending and receiving data when configuring one ESP 8266

module in dual mode (Station Mode/ SoftAP Mode). In this configuration the ESP-8266 will act as a

client in Station mode as well as a Host to other devices in SoftAP Mode. As he was not able to figure

it out how to configure the ESP8266 in Dual Mode I am now working on the software.

First we changed the name of the ESP-8266 from AI-THINKER to ESP8266 and setup a password as

well for other devices to connect to it.

os_memset(config.ssid, 0, 32);

 os_memset(config.password, 0, 64);

 os_memcpy(config.ssid, "ESP", 3);

 os_memcpy(config.password, "12345678", 8);

We also defined how many stations can connect to ESP8266 at SoftAP Mode at maximum.

22

 config.max_connection = 4;

We am now writing the code to send data to the device connected to the ESP-8266 module using its

SoftAP mode. This would enable me to send data to the device. We have already written the code

before to receive data in the softAP mode.

LOCAL void ICACHE_FLASH_ATTR tcp_server_rec_cb(void *arg,char* data,uint16_t len){

struct espconn *con = arg;

espconn_sent(con,strcat(data,"\n"),len);

//send this data to sap tcpserver

ets_uart_printf("tcp rec data: %s \n",data); // this will go to sap send data

}

With these lines of code added to my previous code we can now configure one ESP module in both

Station and SoftAP mode at the same time as well as send and receive data and view it on the

terminal.

We were successfully able to run the program in dual mode

23

After that we started working on our circuit board for ESP8266 as we were not satisfied with previous circuit.

End Time: 21:48

Start Time: 12:15 Hrs Date: 20/06/2018

Today we are having a meeting about our progress till date and the work that is still left for us to

complete. We asked Sanjay to take the ESP8266 module outside the classroom and verify its range.

On its datasheet it is mentioned approximately 400 metres but to our surprise we found that there is

problem in connectivity even when the ESP module is taken to the ground floor. This was happening

due to the presence of concrete walls which was disrupting the line of sight and hindering the

connectivity. When we took our entire setup to the open field behind our campus we found that with

a proper line of sight we were not able to get anywhere close to mentioned connectivity range in the

datasheet. We got connectivity at a maximum range of around 250m.

Thereafter we decided to connect external antennas to the wifi-module to increase its range. Sanjay

took up the responsibility of finding how to connect the external antennas that we have ordered to

ESP8266 module.\

End Time: 15:35 Hrs

Start Time: 20:10 Hrs Date: 20/06/2018

We are now working on the code on how to build a wireless bridge between two ESP8266 modules.

For that we have flashed the previous firmware that we developed on one ESP8266 module. Now we

have to write the firmware for the second ESP8266 module which again has to be configured in both

Station and SoftAP mode.

We used the code that we wrote previously and started making changes to it.

The first step that we did was to change the SSID and password of the Station Mode. By doing this it

will now connect to the other ESP8266 module and not the home wifi network.

char SSID[] = "ESP8266";

char PASSWORD[]= "12345678";

struct station_config sc;

Then we wrote the code to establish a connection and obtain the MAC Address from the first

module. It is very necessary to obtain the MAC Address because without the MAC Address it won’t

be possible to successfully establish a link between the two modules even after knowing the IP

address of the first module.

24

_STAMODE_GOT_IP: {

system_set_os_print(1);

ets_uart_printf("Got IP:" IPSTR "\n",IP2STR(&event->event_info.got_ip.ip));

tcp_client_init();

SoftAP:%s\n",MAC2STR(&event->event_info.sta_disconnected.mac));

We are now writing the code to configure the TCP/IP port which will be used for communication.

LOCAL void ICACHE_FLASH_ATTR sap_tcp_server_init(){

ets_uart_printf("SAP tcp init START \n");

sap_tcp_conn.type = ESPCONN_TCP;

sap_tcp_conn.state = ESPCONN_NONE;

sap_tcp_conn.proto.tcp = &sap_esptcp;

sap_tcp_conn.proto.tcp->local_port = 3456;

espconn_regist_connectcb(&sap_tcp_conn,sap_tcp_connect_cb);

espconn_regist_disconcb(&sap_tcp_conn,sap_tcp_disconnect_cb);

espconn_regist_reconcb(&sap_tcp_conn,sap_tcp_reconnect_cb);

int ret = espconn_accept(&sap_tcp_conn);

espconn_regist_time(&sap_tcp_conn,7200,0);

ets_uart_printf("SAP tcp init DONE \n");

}

We are using port 3456 of ESP8266 as the TCP/IP port in the softAP mode.

Now configuring the UART

uart_init(BIT_RATE_115200, BIT_RATE_115200);

Here 115200 is the Baudrate. Baudrate is a common measure of the speed of communication over a data

channel.

We have compiled the code and it compiles with no errors. Now using the ESP8266 flashing kit to flash the

firmware onto the second ESP8266 module.

25

Though we being able to connect to ESP modules and build the bridge we are not being able to

successfully send and receive data over the bridge.

We have connected my mobile phone to the second ESP8266 module while my first ESP866 module

is connected to my home WI-FI network . Whenever we are sending data from my mobile phone using

TELNET application for android the data is getting transferred and is being printed on the terminal

window of my laptop but whenever we are trying to send any data from my laptop to mobile phone

the data is not getting transmitted.

This implies that we have been partially successful in building the bridge and not fully successful.

End Time: 01:50 Hrs

Start Time: 21:45 Hrs Date: 21/06/2018

We are starting to look forward to fixing the issues with bidirectional communication. While looking

at the puuty terminal we found that the espconn_sent() is returning a value of -12.So we started

searching for what the value -12 returned by the espconn_sent() function is. we went through the

espconn.h file and found that -12 has been defined there as an error - #define ESPCONN_ARG -

12 /* Illegal argument.*/. We made some changes in my code by trying to harcode my IP instead of

using the dhcps_start() function to assign a floating IP to the esp module. So we physically harcoded

the AP of the first esp module with a static IP. We used the following lines to implement the static IP

for the first esp module.

wifi_softap_dhcps_stop();

IP4_ADDR(&ipinfo.ip, 10, 10, 10, 1);

IP4_ADDR(&ipinfo.gw, 10, 10, 10, 1);

IP4_ADDR(&ipinfo.netmask, 255, 255, 255, 0);

int ret = wifi_set_ip_info(SOFTAP_IF, &ipinfo);

Then we compiled the code and the code compiled without any compilation error but after flashing

the code on the esp module which acts as the server or rather connects to the second esp module as a

host, We find that although the IP address has changed and still the error persists.

26

Our initial gut feeling was that, the error was occuring due to conflict in IP, as the IP was being set

by the router using the dhcps_start() function , but now with the implementation of the static IP that

problem shouldnt exist. So now we realize that error is not occuring due to the conflict of IP's.

End Time: 04:15 Hrs Date: 21/06/2078

Start Time: 18:00 Hrs Date: 23/06/2018

While looking at the espconn.h file more closely and also referring to the espconn.h file in the git

repository https://github.com/espressif/esp8266-dual-

cloud/blob/master/ESP8266_RTOS_SDK/include/espressif/espconn.h we realized that the error is

occurring because the esp cant find the corresponding network for transmission according to the

structure espconn.

https://github.com/espressif/esp8266-dual-cloud/blob/master/ESP8266_RTOS_SDK/include/espressif/espconn.h
https://github.com/espressif/esp8266-dual-cloud/blob/master/ESP8266_RTOS_SDK/include/espressif/espconn.h

27

We looked at the espconn structure in espmissingincludes.h and found that it has two parameters

"type" and "state" where type refers to the type of connection that is whether UDP or TCP protocol is

used for connecting and the state of the esp module.

Now we are having no clue why this error is coming up because it seems to me that the arguments

we are passing in espconn_sent() function matches with the espconn_struct.

End Time: 22:50 Hrs

Start Time: 19:42 Hrs Date: 27/06/2018

To find out where the error was occuring we implemented a switch-case statement inside the

tcp_client init(). We used the value returned by the esp_connect() to switch between the cases.

int espcon_status = espconn_connect(&TcpSTAClientConn);

switch(espcon_status)

{

 case ESPCONN_OK:

 ets_uart_printf("TCP CLINET created.\r\n");

 ets_uart_printf ("%s\n\r",data);

 ets_uart_printf("%d\n\r", &TcpSTAClientConn);

 int strLen=0;

 strLen=strlen(data);

 int a =espconn_sent(&TcpSTAClientConn,data,strlen(data));

 ets_uart_printf("main tcp data send status: %d.\r\n",a);

 tcpClientFalg = 1;

 break;

 case ESPCONN_RTE:

 ets_uart_printf("Error connection, routing problem.\r\n \r");

 break;

 case ESPCONN_TIMEOUT:

 ets_uart_printf("Error connection, timeout.\r\n\r");

 break;

 case ESPCONN_MEM:

 ets_uart_printf("OUT OF MEMORY.\r\n\r");

28

 break;

 case ESPCONN_INPROGRESS:

 ets_uart_printf("in progress.\r\n\r");

 break;

 case ESPCONN_ABRT:

 ets_uart_printf("ABORT.\r\n\r");

 break;

 case ESPCONN_RST:

 ets_uart_printf("RESET.\r\n\r");

 break;

 case ESPCONN_CLSD:

 ets_uart_printf("CLOSED \r\n\r");

 break;

 case ESPCONN_CONN:

 ets_uart_printf("NOT CONNECTED\r\n\r");

 break;

 case ESPCONN_ARG:

 ets_uart_printf("ILLEGAL ARGUMENT.\r\n\r");

 break;

 case ESPCONN_ISCONN:

 ets_uart_printf("ALREADY CONNECTED.\r\n\r");

 break;

 default:

 ets_uart_printf("Connection error: %d\r\n\r", (int) espcon_status);

 }

29

We did this to navigate through all the possible errors mentioned in espconn.h file.The errors listed

in espconn.h are as follows

/* Definitions for error constants. */

#define ESPCONN_OK 0 /* No error, everything OK. */

#define ESPCONN_MEM -1 /* Out of memory error. */

#define ESPCONN_TIMEOUT -3 /* Timeout. */

#define ESPCONN_RTE -4 /* Routing problem. */

#define ESPCONN_INPROGRESS -5 /* Operation in progress */

#define ESPCONN_ABRT -8 /* Connection aborted. */

#define ESPCONN_RST -9 /* Connection reset. */

#define ESPCONN_CLSD -10 /* Connection closed. */

#define ESPCONN_CONN -11 /* Not connected. */

#define ESPCONN_ARG -12 /* Illegal argument. */

#define ESPCONN_ISCONN -15 /* Already connected. */

After compilation of the code and flashing it on the esp module we find that Illegal Argument error

still exists but the esp_connect function returns a value of -1 or espconn_ok that is it returns a ok

status. So even after returning a OK status that error still exists.

END TIME: 03:40 Hrs Date: 28/06/2018

Start Time: 18:05 Hrs Date: 02/07/2018

We are being unable to find any proper solutions to the error. We have google for this error but still

of no avail. These are the links we have visited:

https://www.esp8266.com/viewtopic.php?f=160 HYPERLINK

"https://www.esp8266.com/viewtopic.php?f=160&t=17965" HYPERLINK

"https://www.esp8266.com/viewtopic.php?f=160 HYPERLINK

"https://www.esp8266.com/viewtopic.php?f=160&t=17965"& HYPERLINK

"https://www.esp8266.com/viewtopic.php?f=160&t=17965"t=17965" HYPERLINK

"https://www.esp8266.com/viewtopic.php?f=160&t=17965"& HYPERLINK

"https://www.esp8266.com/viewtopic.php?f=160&t=17965" HYPERLINK

"https://www.esp8266.com/viewtopic.php?f=160 HYPERLINK

"https://www.esp8266.com/viewtopic.php?f=160&t=17965"& HYPERLINK

"https://www.esp8266.com/viewtopic.php?f=160&t=17965"t=17965" HYPERLINK

"https://www.esp8266.com/viewtopic.php?f=160&t=17965"t=17965

https://github.com/espressif/esp8266-dual-cloud/.../ESP8266.../espressif/espconn.h

https://www.espressif.com/sites/.../2c-esp8266_non_os_sdk_api_reference_en.pdf

https://www.esp8266.com/viewtopic.php?f=160&t=17965
https://www.esp8266.com/viewtopic.php?f=160&t=17965
https://www.esp8266.com/viewtopic.php?f=160&t=17965
https://www.esp8266.com/viewtopic.php?f=160&t=17965
https://www.esp8266.com/viewtopic.php?f=160&t=17965
https://www.esp8266.com/viewtopic.php?f=160&t=17965
https://www.esp8266.com/viewtopic.php?f=160&t=17965
https://www.esp8266.com/viewtopic.php?f=160&t=17965
https://www.esp8266.com/viewtopic.php?f=160&t=17965
https://www.esp8266.com/viewtopic.php?f=160&t=17965
https://www.esp8266.com/viewtopic.php?f=160&t=17965
https://github.com/espressif/esp8266-dual-cloud/.../ESP8266.../espressif/espconn.h
https://www.espressif.com/sites/.../2c-esp8266_non_os_sdk_api_reference_en.pdf

30

After referring to the documentation of esp8266 provided by its developers Espressif we tried

implenting remote_ip and remote_port as it is mentioned for espconn_sent_callback function

definition.

4.1.6. espconn_sent_callback()

Function Callback after the data are sent.

Prototype void espconn_sent_callback (void *arg)

Parameter

void *arg: pointer corresponding structure espconn. This pointer may be different

in different callbacks, please don’t use this pointer directly to distinguish one from

another in multiple connections, use remote_ip and remote_port in espconn

instead.

Return none

So we implemented the changes accordingly

os_memcpy(TcpSTAClientConn.proto.tcp->remote_ip, &ip, 4);

TcpSTAClientConn.proto.tcp->remote_port = 2345;

We compiled my code and like before it compiled without any error but after flashing it on esp8266

the same error still existed.

End Time: 05:30 Hrs Date: 03/07/2018

31

Start Time: 20:05 Hrs Date: 07/07/2017

As we are having no clue on how to solve the error we posted this on

ESP8266 forum

So now we are waiting for some insight on how to solve the error.

We also have gone through the document provided by Espressif to learn more about the espconn

struct.The espconn struct is as follows.

struct espconn {

 /** type of the espconn (TCP, UDP) */

 enum espconn_type type;

 /** current state of the espconn */

 enum espconn_state state;

 union {

 esp_tcp *tcp;

 esp_udp *udp;

 } proto;

 /** A callback function that is informed about events for this espconn */

32

 espconn_recv_callback recv_callback;

 espconn_sent_callback sent_callback;

 uint8 link_cnt;

 void *reverse;

};

Here the enum espconn_type checks whether the connection is a UDP or a TCP while the enum

espconn_state checks for the current state of the esp that is whether it is connected,disconnected,

reconnecting or writing to a device. It also stores the local_port, remote_port, local_ip and

remote_ip. This also i got know from the espconn.h file. The structures are as follows

typedef struct _esp_tcp {

 int remote_port;

 int local_port;

 uint8 local_ip[4];

 uint8 remote_ip[4];

 espconn_connect_callback connect_callback;

 espconn_reconnect_callback reconnect_callback;

 espconn_connect_callback disconnect_callback;

 espconn_connect_callback write_finish_fn;

} esp_tcp;

END TIME: 00:30 Hrs Date: 08/07/2018

END TIME: 17:50 Hrs

START TIME: 15:30 Hrs Date: 12/07/2018

Even after buffering the data in the receive callback function that is receive_cb it shows up the same error.

So we have decided to implement a delay of a few milliseconds between the time the ESP8266 receives the

data from the device connected at its Access Point and forwarding it ahead to the other ESP8266 connected

at its station, so that the receive and transmit of data doesn’t happen simultaneously and the memory buffer

doesn’t get cleared instantly. But this also didn’t change things in anyways as i am stuck exactly where i was

before.

33

So now our only options are to resort to my professors and my seniors who have worked with ESP8266

previously for help.

END TIME: 19:Hrs

START TIME: 02:00 Hrs Date: 16/07/2018

We have mailed Professor Mike regarding this issue. The following was our email to Mike:

Hello Mike,

This mail is regarding the error that we are facing with our project and we need an experts advice to guide

through our issue. We hope to get your valuable inputs to complete our project ESP8266 bridge.We are

trying to solve the error from past three weeks and are struck at this point.We are sending you our code as

well as the part that we are facing error with.We would kindly request you to please provide your suggestion

in solving this issue and guide us in completing our project .

..

==

I have 2 esp modules. Both work on station AP mode

==

==

module A (in station mode) connects to a router

module A (in softAP mode) works as a tcp server

module B (in station mode) connects to module A's softAP

module B (in softAP mode) acts as a tcp server

==

==

sending receiving data via TCP between a device connected to the router and module A works perfectly

sending receiving data via TCP between a device connected to the module A's softAP and module A works

perfectly

==

==

34

now module B connects (as station) to module A's softAP and a TCP connection is created with module A

as server and module B as client. The data transfer is working. Data received from the client, by the server,

is mirrored i.e if 'a' is received , 'a' is send back.

==

==

module B's softAP acts as a tcp server and connecting my laptop to module B's softAp as a tcp client is

working as well. Data sending and receiving is working.

The problem arises when i try to send the data received via module B's softAp to module A. In the data

receive callback of module B's softAP, i send the received data to module B's station TCP connection and i

get erroe code (-12) which is illegal argument error. I need your help with resolving it. Once it is sorted the

project will be almost done.

==

int espcon_status = espconn_connect(&TcpSTAClientConn);

 //#ifdef PLATFORM_DEBUG

 switch(espcon_status)

 {

 case ESPCONN_OK:

 ets_uart_printf("TCP CLINET created.\r\n");

 tcpClientFalg = 1;

 break;

 case ESPCONN_RTE:

 ets_uart_printf("Error connection, routing problem.\r\n\r");

 break;

 case ESPCONN_TIMEOUT:

 ets_uart_printf("Error connection, timeout.\r\n\r");

 break;

 case ESPCONN_MEM:

 ets_uart_printf("OUT OF MEMORY.\r\n\r");

 break;

 case ESPCONN_INPROGRESS:

 ets_uart_printf("in progress.\r\n\r");

35

 break;

 case ESPCONN_ABRT:

 ets_uart_printf("ABORT.\r\n\r");

 break;

 case ESPCONN_RST:

 ets_uart_printf("RESET.\r\n\r");

 break;

 case ESPCONN_CLSD:

 ets_uart_printf("CLOSED \r\n\r");

 break;

 case ESPCONN_CONN:

 ets_uart_printf("NOT CONNECTED\r\n\r");

 break;

 case ESPCONN_ARG:

 ets_uart_printf("ILLEGAL ARGUMENT.\r\n\r");

 break;

 case ESPCONN_ISCONN:

 ets_uart_printf("ALREADY CONNECTED.\r\n\r");

 break;

 default:

 ets_uart_printf("Connection error: %d\r\n\r", (int)espsscon_status);

 }

 We are getting Connection error: 1. none of the errors mentioned in the espconn.h is received. i have

mentioned all the errors in the switch case but i still get error code 1.

my code for tcp connection is as follows

char tcpserverip[10];

 TcpSTAClientConn.proto.tcp = &ConnTcp;

 TcpSTAClientConn.type = ESPCONN_TCP;

 TcpSTAClientConn.state = ESPCONN_NONE;

 //os_sprintf(tcpserverip, "%s", "10.10.10.1");

 //uint32_t ip = ipaddr_addr(tcpserverip);

 uint32_t ip = ipaddr_addr("10.10.10.1");

36

 os_memcpy(TcpSTAClientConn.proto.tcp->remote_ip, &ip, 4);

 TcpSTAClientConn.proto.tcp->local_port = 1234;//espconn_port();

 TcpSTAClientConn.proto.tcp->remote_port = 2345;

 espconn_regist_connectcb(&TcpSTAClientConn, tcp_connect_cb);

 espconn_regist_reconcb(&TcpSTAClientConn, tcp_reconnect_cb);

 espconn_regist_disconcb(&TcpSTAClientConn, tcp_disconnect_cb);

 //#ifdef PLATFORM_DEBUG

 ets_uart_printf("Start espconn_connect to " IPSTR ":%d\r\n", IP2STR(TcpSTAClientConn.proto.tcp-

>remote_ip), TcpSTAClientConn.proto.tcp->remote_port);

 //#endif

 //#ifdef LWIP_DEBUG

 ets_uart_printf("Start espconn_connect local port %u\r\n", TcpSTAClientConn.proto.tcp->local_port);

 //#endif

 ets_uart_printf("FREE HEAP = %d\r\n",system_get_free_heap_size());

 int espcon_status = espconn_connect(&TcpSTAClientConn);

 //#ifdef PLATFORM_DEBUG

 switch(espcon_status)

 {

 case ESPCONN_OK:

 ets_uart_printf("TCP CLINET created.\r\n");

 tcpClientFalg = 1;

 break;

 case ESPCONN_RTE:

 ets_uart_printf("Error connection, routing problem.\r\n\r");

 break;

 case ESPCONN_TIMEOUT:

 ets_uart_printf("Error connection, timeout.\r\n\r");

 break;

 case ESPCONN_MEM:

 ets_uart_printf("OUT OF MEMORY.\r\n\r");

37

 break;

 case ESPCONN_INPROGRESS:

 ets_uart_printf("in progress.\r\n\r");

 break;

 case ESPCONN_ABRT:

 ets_uart_printf("ABORT.\r\n\r");

 break;

 case ESPCONN_RST:

 ets_uart_printf("RESET.\r\n\r");

 break;

 case ESPCONN_CLSD:

 ets_uart_printf("CLOSED \r\n\r");

 break;

 case ESPCONN_CONN:

 ets_uart_printf("NOT CONNECTED\r\n\r");

 break;

 case ESPCONN_ARG:

 ets_uart_printf("ILLEGAL ARGUMENT.\r\n\r");

 break;

 case ESPCONN_ISCONN:

 ets_uart_printf("ALREADY CONNECTED.\r\n\r");

 break;

 default:

 ets_uart_printf("Connection error: %d\r\n\r", (int)espsscon_status);

 }

my code for soft tcp data rec callback is as follows

LOCAL void ICACHE_FLASH_ATTR sap_tcp_server_rec_cb(void *arg,char* data,uint16_t len){

 struct espconn *con = arg;

 ets_uart_printf("sap_tcp rec data: %s \n\r",data); // this will go to the tcp connection

38

 espconn_sent(&TcpSTAClientConn,"helloWorld\n\r",strlen("helloWorld\n\r"));

Above line gives us the -12 error and sometimes 1.

I hope you will look into this and help us completing our project.

Thanking you,

Abubhab de.

We got a reply from Mike where he provided us with his opinion that there may be a mismatch in the

argument that we are passing. He suggested that the structure TcpSTAClientConn is not the same as the

pointer 'arg' that is being passed. He also had the view that a WiFi can only be configured as a Staion or an

Access Point but not both simultaneously.

We are now trying to implement the changes. First we have changed the argument that we were passing in

the callback function and then we implemented a switchcase to switch between the modes of operation that

is between the Station and the SoftAp mode. According to the new changes that we have implemented we

have used a flag called receiveDataflag which would be set once the ESP8266 receives data on its access

point. Once the flag is set, the ESP8266 will terminate its SoftAp connection mode and switch to its Statin

mode to transmit the data stored in the data buffer to the preceeding ESP8266 module or to the router.

Even after applying these changes the code returns the same error.

We have also contacted our senior Srinidhi Krishnan regarding this issue and he told us that this sometimes

happen if the ESP8266 doesnt get the desired 3.3V at its input.

39

In order to ensure that i was getting 3.3V at its input we checked with the multimeter at the output of the

power suplly for the ESP8266 where i got a voltage of 3.37V on the multimeter and on the other end which

is connected to the ESP8266 Vcc pin. This also gave me a reading of 3.34V on the multimeter. So this

clearly defines that there are no issues regarding the supply voltage to the ESP8266 module.

END TIME: 15:00 Hrs

START TIME: 07:00 Hrs Date: 18/07/2018

We have emailed to Professor Alan Smith regarding the issue as well and he gave us a reply which is as

follows:

This didn’t help either and we are still stuck at the same place with now getting wrinkles on our forehead on

how to complete the project in time or rather if at all we would be able to get our project working

END TIME: 10:50Hrs

40

START TIME: 13:00 Hrs Date: 20/07/2018

Having no success still now we are going to try out writing the firmware in in Arduino IDE as well. We will

be trying to use Arduino sketches for Arduino UNO development board. We have downloaded the Arduino

IDE to write the firmware.

CONNECTING DIAGRAM WITH ARDUINO

Budrate – 115200

Inbuilt AT command set

32 bit processor

26-52 MHZ processor

64 kb of RAM

96 kb of ROM

Arduino IDE downloaded

Download ESP8266 library for Arduino

Create a new sketch in Arduino to run the code

Write the code for establishing ESP8266 in dual mode

Compile the sketch and upload the sketch to ESP8266 using Arduino

CODE:
#include <ESP8266WiFi.h>

#include <ESP8266WebServer.h>

#include <EEPROM.h>

#include <string.h>

char ssid[100] = "STA MODE"; //SSID STATION MODE

char password[100] = "1234567890"; //Password STATION MODE

const char* myssid = "AP MODE"; //SSID AP MODE

const char* mypassword = "1234567890"; //Password AP MODE

WiFiServer server(80);

ESP8266WebServer serverAP(8000);

long timeout=0;

char estado=0;

#define OUT1 5

void handleRoot()

RX TX

RX TX
RX

TX

co

nn

ect

ARDUINO

41

{

serverAP.send(200, "text/html", "<h1>You are connected</h1>");

}

void setup()

{

pinMode(OUT1, OUTPUT);

digitalWrite(OUT1, 0);

WiFi.mode(WIFI_AP_STA);

//AP

IPAddress myIP =WiFi.softAP(myssid, mypassword);

serverAP.on("/", handleRoot);

serverAP.begin();

//Station

WiFi.begin(ssid, password);

}

void loop()

{

serverAP.handleClient();

if(estado==0)

{

if (WiFi.status() == WL_CONNECTED)

{

server.begin();

server.setNoDelay(true);

estado=1;

}

}

if(estado==1)

{

WiFiClient client = server.available();

if (!client)

{

return;

}

timeout=0;

while(!client.available() && timeout<=1000)

{

delay(1);

timeout++;

}

String req = client.readStringUntil('\r');

client.flush();

String resposta = "HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n<!DOCTYPE HTML>\r\n<html>\r\n ";

if (req.indexOf("/A") != -1)

{

digitalWrite(OUT1,1);

resposta += "OUT1 ON";

}

42

else if (req.indexOf("/a") != -1)

{

digitalWrite(OUT1,0);

resposta += "OUT1 OFF";

}

client.flush();

resposta += "</html>\n";

client.print(resposta);

delay(1);

}

}

We get the same error.

We have also used AT commands but still error persist.

43

Finally we contacted our client Mr. Robert and gave him the information regarding our progress

This was Mr. Robert Elders reply

REASON AND ANALYSIS

Additional sites discussing same issue

1. https://forum.arduino.cc/index.php?topic=415359.0

2. https://arduino.stackexchange.com/questions/18449/esp8266-and-arduino-bidirectional-streaming-

from-and-to-a-website

3. https://www.esp8266.com/viewtopic.php?f=32&t=11421

Wireless bridge with ESP8266 is not possible as we are not able to establish a bidirectional communication

between two modules working in dual mode and connected to WIFI.

The error lies in the argument being passed to ESPCONN tcp_connect structure. There are no references

regarding the type of arguments this structure can accept.

Internal memory of ESP8266 is 512 bits and even this may be one of the reasons why bridge was not

established

https://forum.arduino.cc/index.php?topic=415359.0
https://arduino.stackexchange.com/questions/18449/esp8266-and-arduino-bidirectional-streaming-from-and-to-a-website
https://arduino.stackexchange.com/questions/18449/esp8266-and-arduino-bidirectional-streaming-from-and-to-a-website
https://www.esp8266.com/viewtopic.php?f=32&t=11421

44

CONCLUSION

ESP8266 could not be operated in dual mode transferring data directionally while connected to WIFI because

of which Wireless WIFI bridge is not been established. As suggested by Mr. Robert it might be possible that

Wireless Bridge through ESP8266 would require some deep firmware hacks into the proprietary firmware

blobs (for which we don't have source).

