
Using SSH and Raspberry Pi for Self-Hosted Backups
2019-04-22 - By Robert Elder

Introduction
 The purpose of this guide is to show you the steps required to build your own automated
backup solution that you can use for backing up source code or small files using git and
SSH. This backup technique can be used to back up your data to another computer in your
house or office, but you can also use it to back up to multiple locations over the internet
securely.

 This guide is targeted at individuals who plan to build this solution in an environment
where the client and server will both use Linux. It may be possible to adapt the steps shown
here to work on a Windows machine, but that won't be covered in this guide.

 The following Linux commands will be used. Some of them will be explained below, but
you may want to Google them if you've never seen them before:

ip
netstat
sudo
apt-get
ssh
vim
nano
git

 In the rest of this article I will present the final solution as a series of smaller bite sized
'goals' that build upon each other. It may not be obvious how each individual goal connects
to the final outcome of backing up your files, but eventually this will all be tied together.

Goal 0: Editing Files and Installing Prerequisites
 Later in this guide, you'll need to make a few edits to files on the command-line. If you're
new to using the command-line, this might be difficult for you if you don't know what editor to
use. Personally, I use an editor called 'vim', but if you've never heard of that before, I
suggest using 'nano'. With nano, you can edit or create a file by running a command like
this:

nano somefile.txt

 Here's what nano looks like:

https://www.robertelder.org/
http://blog.robertelder.org/ssh-git-self-hosted-backups/

 For the noobs out there, the instructions at the bottom of the screen that show the carrot
symbol mean to press the control key and the letter key at the same time to perform the
desired action. For example, to the '^O' means that you can press 'Ctrl + o' to 'write out' and
save the file to disk. I won't say much else about nano since that's fairly off-topic and you
can find guides online elsewhere.

 Another thing to do before we get started is to install pre-requisites. I'll assume that you're
using Ubuntu on your desktop/laptop. Here's the install command we need:

sudo apt-get install nmap git

 You'll know that nmap is installed if you can run this command and get a version number
back:

nmap -v

 Once you've got nmap and git installed and you're confident that you can work with a
command-line editor that can edit and create files, then you've completed goal 0!

Goal 1: Creating The Simplest git Remote
 In this section, we'll make sure you have the confidence to set up your own git 'remote'.
 What is a 'remote' you ask? Well, it's the 'remote' place where your code and files end up
when you do 'git push origin master' to push your code to GitHub (or BitBucket, or gitlab
etc.). If you do a 'git clone ...', you are copying the files from the 'remote'. A 'remote' can be
located on another computer, on GitHub, or even in another folder on the same computer.
 The simplest example of setting up a git 'remote' is actually just to create a directory on your
computer and turn it into a 'remote'. First, let's make sure git is installed:

sudo apt-get update

sudo apt-get install git

 Now, let's set up our git 'remote'. You can run these commands in any directory you like:

Set up and initialize a 'remote'

mkdir remote1

cd remote1

git init --bare

cd ..

Set up and initialize a local repo

mkdir my-repo

cd my-repo

git init

cd ..

 The folder 'remote1' now contains a fully functional 'remote' that you can push code to,
just like GitHub! The folder 'my-repo' contains an empty repo that you can start committing
files to. Let's do that now:

cd my-repo

echo "This is my readme" > README.md

git add .

git commit -m "Create a readme file."

 Now, what happens if you try to push to 'origin master'?

$ git push origin master

fatal: 'origin' does not appear to be a git repository

fatal: Could not read from remote repository.

Please make sure you have the correct access rights

and the repository exists.

 It didn't work because we didn't describe the relationship between our current repo (the
my-repo folder) to the remote (the remote1 folder)! You can list all remotes by using the
following command:

git remote --verbose

 But we don't have any 'remotes' set up, so let's add one right now called 'origin':

git remote add origin ../remote1

 Now, let's check to see what remotes there are:

$ git remote --verbose

origin ../remote1 (fetch)

origin ../remote1 (push)

 Now let's try to push again:

$ git push origin master

Counting objects: 3, done.

Writing objects: 100% (3/3), 235 bytes | 235.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To ../remote1

 * [new branch] master -> master

 Awesome, it worked! We just created our own 'git remote' that we can push our repository
to. This remote is still just on the same computer in another directory, but later we'll show
how you can put it on another computer. You can even clone from the repo just like you
would with any other git rep URL:

git clone /the/path/to/remote1/

Goal 2: Using SSH to Access Another Computer on the LAN
 For this goal, we'll focus on making sure that you can use SSH to access the Raspberry
Pi and run commands on it remotely. This goal doesn't have anything to do with git, but we'll
use the two together in another goal. If you're not sure what 'SSH' is or what it does, you
should do a quick skim of the article what is ssh before continuing with the goal.

 For the following steps, I will assume that you're going to be working on a LAN setup that
works something like this:

 To describe the setup above, this is one where you have your main laptop or desktop
connected to the router (using either ethernet cable of WiFi), and your Raspberry Pi also
connected to the same router using an ethernet cable.

 With this setup, the first thing we should do is identify what local IP address the Raspberry
Pi has on the LAN. In order to do that, you can run this command from the laptop to help us:

ip address

 Here's the output that I get on my current laptop:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default

qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: enp3s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group

default qlen 1000

http://blog.robertelder.org/what-is-ssh/
http://blog.robertelder.org/images/blog_ssh-git-self-hosted-backups_simple-lan_3648x2736_q100.jpg

 link/ether d8:cb:8a:f3:2b:94 brd ff:ff:ff:ff:ff:ff

 inet 192.168.0.112/24 brd 192.168.0.255 scope global dynamic noprefixroute

enp3s0

 valid_lft 580673sec preferred_lft 580673sec

 inet6 2607:f2c0:e570:1c01:19ef:d1a8:ebea:214f/64 scope global temporary dynamic

 valid_lft 563416sec preferred_lft 61948sec

 inet6 2607:f2c0:e570:1c01:83eb:165e:445b:b377/64 scope global dynamic

mngtmpaddr noprefixroute

 valid_lft 563416sec preferred_lft 131416sec

 inet6 fe80::7f28:1a7d:9453:79b1/64 scope link noprefixroute

 valid_lft forever preferred_lft forever

3: wlp2s0: <BROADCAST,MULTICAST> mtu 1500 qdisc mq state DOWN group default qlen

1000

 link/ether ac:2b:6e:14:e9:cf brd ff:ff:ff:ff:ff:ff

 Note the highlighted part, '192.168.0.112/24' in this example, which indicates that my
laptop has IPV4 address 192.168.0.112 on my LAN with the first 24 bits of that address being
common to every computer on the network. Please be aware that the number
192.168.0.112/24 is just an example and your IP address will be different. Usually, your LAN
ip address will start with something like '192.168.0.', but some routers also use addresses
that start with '192.168.1.' or '192.168.25.' by default. In fact if you look at the picture above
closely, you'll see that on the computer I used to pose for this photo, its IP address was
actually 192.168.25.101/24. Often, you can also manually configure this LAN IP address
prefix on the router settings.

 Now, since the Raspberry Pi is also connected to the same network as the
'192.168.0.112/24' address, we can run a port scan using this command:

nmap 192.168.0.112/24

to show all computers on this same network that answer back on common open ports. Since
we're specifically interested in using SSH to access the Raspberry Pi, you can use this more
specific command to only look for computers that answer back on port 22 (the default SSH
port):

nmap -p 22 192.168.0.112/24

Note that sometimes, I've found that you will need to explicitly specify port 22 in order for the
open port to actually be found. I've also experienced situations where I need to repeat the
scan several times before it detects the open port. I assume that this is related to some kind
of security filtering that certain routers do. Once you finish running nmap, you should see
something like this:

Starting Nmap 7.60 (https://nmap.org) at 2019-00-00 23:19 EDT

Nmap scan report for router (192.168.0.1)

Host is up (0.00051s latency).

...

Nmap scan report for 192.168.0.177

Host is up (0.00054s latency).

PORT STATE SERVICE

22/tcp open ssh

...

Nmap done: 256 IP addresses (N hosts up) scanned in 2.55 seconds

In this example, the IP address 192.168.0.177 is the address of the Raspberry Pi when it
connects to my router, and doing a port scan with nmap was how we found it. When you run
this command, you might get multiple results that have port 22 open, and if that's the case, it
means you probably have multiple computers connected to the router that are running SSH.

https://nmap.org/

 If you don't find any other computers that are running SSH, the Raspberry Pi might not have
been set up to have its SSH server turned on yet! Newer versions of the Raspberry Pi
operating systems usually have SSH disabled by default. Here is some Raspberry Pi
documentation that describes how to enable SSH.

At this point, you should be able to run this command:

ssh pi@192.168.0.177

And, depending on how much you've set up your Raspberry Pi, it will likely ask you for a
password. Do a Google search to find out the default password for your version of the
Raspberry Pi OS. Once you successfully get access to the raspberry Pi them you've
completed this goal. Here's a picture of what success looks like:

You can use the 'exit' command to exit out of the Raspberry Pi SSH session:

exit

You have now successfully completed goal 2!

Goal 3: Using Public And Private Keys.
 In this section, we will discuss the process of setting up SSH key pairs. This guide will
focus on situations where you have physical access to both computers that you'll be using.
 The end result will allow you to use SSH to access one computer from the other without
needing to type in a password. We will also assume that you already have the ability to
access the machine you're granting access for through either password-based SSH
authentication, or physical access which you can use to modify files directly.

 For this discussion, we will assume that the computer you want to access is a Raspberry
Pi (it could be any other Unix machine running an SSH server), and that its IP address on the
LAN is '192.168.0.177'. We'll also assume that you want to log in under the user 'pi'. First,
let's make sure that you have a '.ssh' directory on your laptop/desktop computer:

mkdir -p ~/.ssh

 Now, in order to generate a public and private keypair (on your laptop/desktop), you can
use these commands:

cd ~/.ssh

ssh-keygen

 to create a keypair named 'my-first-keypair'. When you do this, adding a password is
optional so we will leave it blank for this example. Here's what this looks like when I ran
through the process:

https://www.raspberrypi.org/documentation/remote-access/ssh/

robert@computer:~/.ssh$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/robert/.ssh/id_rsa): my-first-keypair

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in my-first-keypair.

Your public key has been saved in my-first-keypair.pub.

The key fingerprint is:

SHA256:2L1U7/JJ8Gak8RqUizZl+Y5b/gNPdybvMgtSBapp3GQ robert@computer

The key's randomart image is:

+---[RSA 2048]----+

| . |

| . . |

| E + . |

| B X * . |

| . T @ + |

| . o %. o +|

| * @+ =.|

| # o= .|

| +.=.o*.|

+----[SHA256]-----+

 The result of running this command is to create two files: 'my-first-keypair' and 'my-first-
keypair.pub'. The file 'my-first-keypair' contains the private key and the 'my-first-keypair.pub'
contains the public key. Here's a visual illustration of what you just did:

 The 'private' key is called private key because you're supposed to keep it secret and it
never leaves the computer where it was created. The 'public' key is called public because
you can freely share it with others publicly. The private key is something we will use to log
into the Raspberry Pi using SSH after we add our public key onto the Raspberry Pi. In order
to 'distribute' the public key, you must add it inside a file located at '~/.ssh/authorized_keys'
on the machine you need to log into:

 In order to use SSH keys to log into your Raspberry Pi, you must first copy your public
key to the Raspberry Pi inside a file located at '~/.ssh/authorized_keys'. The
'authorized_keys' file can store multiple keys (one on each line) if you have multiple people
or keypairs that are allowed to log in. If you're able to use SSH with a password to access
the Pi, you should first make sure that the '~/.ssh' directory exists on the Raspberry Pi:

ssh pi@192.168.0.177 "mkdir -p ~/.ssh"

 Now copy the public key over and add it to 'authorized_keys' by running this this
command from the laptop:

cat ~/.ssh/my-first-keypair.pub | ssh pi@192.168.0.177 "cat - >>

~/.ssh/authorized_keys"

 This command looks complicated, but it just reads a copy of the public key on your current
computer, then sends it through the SSH connection and adds it to the end of the
'authorized_keys' file. If you want to check to make sure the public key got copied over, run
this command from the laptop:

ssh pi@192.168.0.177 "cat ~/.ssh/authorized_keys"

 If you see something that looks like your public key, then it has been copied successfully.
 Now, try using your private key to see if you can use ssh to log into the Raspberry Pi without
a password:

ssh -i ~/.ssh/my-first-keypair pi@192.168.0.177

 If you get a command prompt on the Raspberry Pi, then you're in! Congratulations! You
have now completed the process of distributing your SSH key!

Goal 4: Setting Up An SSH config File
 For this goal, our objective is to make it easier to use SSH to access your Raspberry Pi.
 For example, we'll make it so that instead of typing this:

ssh -i ~/.ssh/my-first-keypair pi@192.168.0.177

 you can type this instead:

ssh pi-backup

 which is much shorter and easier to remember!

 The way to accomplish this is by editing a file located at '~/.ssh/config'. It's likely that this
file won't already exist, and you'll have to create it. Run this command to edit the ssh config
file:

nano ~/.ssh/config

 And to set up the alias for 'pi-backup', add this to the file:

Host pi-backup

 HostName 192.168.0.177

 Port 22

 User pi

 IdentityFile ~/.ssh/my-first-keypair

 Then save and exit. Also, keep in mind that the IP address '192.168.0.177' written above
is just a specific example. You'll need to replace it with the IP address of your Raspberry Pi.
 Once you do, you should now be able to run this command:

ssh pi-backup

 Once you're able to SSH into the Pi using this easier method, you've successfully
completed goal 4!

Goal 5: Pushing to a repository on the Raspberry Pi Through
SSH
 Now we're ready to do something that looks a bit closer to actually backing up files onto
your Raspberry Pi! Remember all the steps you did for goal 1? You're going to repeat them,
but with a couple differences. First, let's use SSH to log into the Pi:

ssh pi-backup

 Now, set up a git 'remote' in your home directory on the Raspberry Pi:

Set up and initialize a 'remote'

mkdir my-first-backup.git

cd my-first-backup.git

git init --bare

 Then exit back to your laptop/desktop computer:

exit

 Now create a local git repo on your laptop/desktop and add some data into it:

Set up and initialize a local repo

mkdir my-repo

cd my-repo

git init

echo "Hello World" > README

git add .

git commit -m "Create a readme file."

 The last step is to tell the local git repo that the 'remote' we want to use can be accessed
through an SSH tunnel using git. For this we add a remote that uses the ssh config file alias
as the prefix followed by the directory on the Raspberry Pi where we set initialized the
remote. We'll also run a one-time-step the set 'master' as the default branch on the remote.

git remote add pi-backup pi-backup:~/my-first-backup.git

git push --set-upstream pi-backup master

 You should now be fully set up to push and pull to the repo located on your Raspberry Pi!
 Let's do another test just to make sure everything is working:

echo "Awesome" >> README

git add .

git commit -m "Edited readme file."

 And now when you run this command:

git push pi-backup

 And you should see something like this:

Counting objects: 3, done.

Writing objects: 100% (3/3), 226 bytes | 226.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To pi-backup:~/my-first-backup.git

 * [new branch] master -> master

 If you do, you've completed goal 5!

Goal 6: Securing the Raspberry Pi
 Securing your Raspberry Pi is a very large topic can cover many aspects of computer
security, and as a great starting point I would recommend that you first read the Raspberry Pi
foundation's own guide on Securing your Raspberry Pi. In addition, I will provide some
commentary on this guide in order to emphasize what I think are the most important points,
but also to add a few details that aren't reflected in the guide. I will make reference to the
Raspberry Pi foundation's security guide a number of times in the paragraphs below.

The Most Important Thing

https://www.raspberrypi.org/documentation/configuration/security.md

 The absolute most import part of securing your Raspberry Pi is to make sure that you
haven't left on password based SSH access with the default password. There are many bots
scanning the internet constantly trying to log into things with a username of 'pi' and password
'raspberry' since this is a common default login for SSH on Raspberry Pi. If you fail to
disable password-based SSH authentication and leave the password as default, you are
effectively leaving your Raspberry Pi openly accessible to anyone on the local area network it
is connected to. If your Raspberry Pi is behind a router on a home-based network, this will
make it harder for hackers to attack you, but not impossible. If you want to be super safe,
you should try to secure your Raspberry Pi as if it were directly connected to the internet, and
it that case, you DON'T want to have password-based SSH connections enabled with the
default password!

 To fix this potential huge security problem you need to either disable password based
SSH authentication, or change your password to be a strong password. I recommend doing
both. To change the password to a more secure one, use this command:

passwd

you'll be prompted to update the password for whoever the current user is.

 To disable password based SSH authentication, you need to edit the file located at
'/etc/ssh/sshd_config' and make sure it contains the following line somewhere:

PasswordAuthentication no

 If instead you find the line 'PasswordAuthentication no' OR if you find a line that starts
with a '#' character ('#' means commented out), then you'll need to update or add this line as
written above. Also, before you disable password based authentication, make sure that you
first set up SSH key based authentication with public and private keys so that you can still
access the Pi remotely. Otherwise, you won't have any way to log into the Pi using SSH.
 Once you add this new configuration, you need to restart the SSH server for it to take effect:

sudo service ssh restart

 Another big win you can do to improve security is to require require a password when
running the 'sudo' command. This is explained in the guide linked above, and the solution
involves editing the sudoers file. Editing the sudoers file (or any file it includes) can be a
potentially dangerous operation: If you manage to put a syntax error in the sudoers file and
save it, then you won't be able to use sudo to become root and edit the file again! If you get
into this situation, there may or may not be certain workarounds fix the problem, so take care
to avoid it. There is a command called 'visudo' that can be used to edit sudoers file safely:

sudo visudo -f /etc/sudoers

 The '-f' option of visudo is used to edit other files than the default one at '/etc/sudoers '.
 You'll need to search for a line that looks like this:

pi ALL=(ALL) NOPASSWD: ALL

 and replace it with one that looks like this:

pi ALL=(ALL) PASSWD: ALL

 You may need to snoop around in some of the included files. In my case, I found it in
'/etc/sudoers.d/010_pi-nopasswd'.

 Another important part of staying secure is making sure you have the latest security fixes.
 You can get yourself up to date by running the following two commands:

sudo apt-get update

sudo apt-get upgrade

 The Raspberry Pi security guide suggests installing a cron job to keep SSH up to date,
but you can also look into installing Unattended Upgrades to do this without a cron job. You
can also get more flexibility in how and when you upgrade by reading more on the
unattended upgrades documentation.

 Another common security-minded practice is to change your SSH server configuration so
that your SSH client runs on a non-standard port other than the default of 22. This doesn't
prevent anyone from doing anything that they couldn't do if you used port 22, but it does
make your SSH server less likely to be detected by dumb scans of every host on the internet
for port 22. However, some would argue that if you change your SSH port to a port over
1024 that this could actually be a security risk since non-privileged user processes are
allowed to bind to ports over 1024, but you must be root in order to bind to ports less than
1024.

 Yet another thing you can consider is removing the default Raspberry Pi user of 'pi' and
replacing that with another hard to guess username. This makes it even harder for attackers
to guess what login information they would need to use to gain access to your system. It
would also make various other kinds of blind attacks more difficult. It should be noted
though, that some versions of the Raspberry Pi require the 'pi' user to exist in order to
function properly, so be sure to research this before deleting the 'pi' user.

 One final thing you can do to make your setup more secure is password-protect your SSH
private keys. When you use 'ssh-keygen' to generate your keys the private key is itself as
good as password. Therefore, anyone who gains access to your computer with the private
keys, even for a short time, can steal the private key and user it over and over like a
password. If you password protect the private key, you'll have to type a password every time
you log into something and use the private key since it will be encrypted.

Setup Notes For Old Laptop
 There isn't a lot to say about this topic, but is worth mentioning that you could also make
this backup solution work on an old spare laptop. I would suggest installing Ubuntu on the
old laptop since most of the install instructions listed here that work for the Pi will also work
on Ubuntu. You can download a copy of Ubuntu here.

Setup Notes For Raspberry Pi
 If you bought a brand new Raspberry Pi, you may or may not need to flash the SD card
with a new OS image. Some Raspberry Pi kits come with an OS like Raspbian pre-installed.
 If it is pre-installed, you should take note of what version of the OS is pre-installed.

 If an OS other than Raspbian is installed, you will need to consult the documentation for
that OS to learn how to make sure SSH will be set up and ready to use.

 If you decide to install a custom version of Raspbian OS yourself or if your SD card came
blank, consult the guide at Raspbian install instructions which provides and overview of the
process for Windows, Linux and Mac.

 Before you install Raspbian OS, you will notice that there are at least two different
versions of the OS image. One is called the 'desktop' version, and one is called the 'lite'
version. The 'desktop' version includes all the software needed to present a nice user
interface that reminds you of Windows with lots of clickable buttons and icons etc. The 'lite'

https://wiki.debian.org/UnattendedUpgrades
https://www.ubuntu.com/download/desktop
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/documentation/installation/installing-images/README.md

version doesn't have any of this and expects you to know Linux commands because it only
presents you with a terminal where you can type in commands. If you're a n00b, you should
probably go with the 'desktop' version. If you're more experienced with Linux commands,
you may prefer the 'lite' version because it will run faster, use less RAM and it won't require a
larger size SD card.

 Once you've got your Raspbian OS installed, the next thing to do is make sure that you
have an SSH server running on it so you can access it through the command-line. Consult
this article on setting up SSH on Raspbian OS for details. If you're using the UI, there is an
easy UI feature to enable SSH. &nbps;If you're on the command-line, you can do:

sudo touch /boot/ssh

 Then, reboot the Raspberry Pi, and run the following command to make sure that the SSH
server is running:

ps -ef | grep sshd

 You should see at least one entry that contains a reference to the sshd executable
'/usr/bin/sshd' like this:

root 1234 1 0 07:46 ? 00:00:00 /usr/sbin/sshd -D

 If you don't, then the SSH server is probably not running and you'll have to debug why.

Static Versus Dynamic IPs
 The backup solution described by this article has assumed that you have your Raspberry
Pi hosted on the LAN on a given local IP address (192.168.0.177 in our example). However,
we haven't considered the fact that next time you reset all your devices, this IP address is not
guaranteed to be the same. This will mean that any SSH rules you've set up won't work
anymore. But how do we solve this problem to make sure our backup solution is truly always
'automatic'? The answer to this question involves the DHCP protocol, which you may want to
read up on.

 There is more than one way to guarantee that our Raspberry Pi always has the same IP
address on our local network, and two different general approaches are:

1) Change the settings in your router to always assign the Raspberry Pi the same
IP address. - Using this solution you will change some setting on your router only and
leave all of the settings alone on your Raspberry Pi. Your Raspberry Pi will continue to
use the DHCP protocol to obtain a 'dynamic' IP address, but the router will remember
that your Raspberry Pi (specifically its MAC address) should always be assigned the
same address. If you don't know how to log into your router's admin page, check the
back of the router as it will usually have some default username/password and IP
address printed on it. You can log into many common household routers by using a
web browser to access '192.168.0.1'. You can also use the nmap command discussed
elsewhere in this guide to scan for anything on the LAN that talks on port 80.
2) Change the Raspberry Pi's configuration to give it a static IP address. - Using
this method, you change some of the network setting on your Raspberry Pi so that it
always uses the same IP address every time it boots up. In this case, it does not rely
on the DHCP server hosted on your router to decide what IP address it has. It simply
chooses to use an IP like '192.168.0.177' regardless of what everything else on the
network is doing. In this situation, you need to be careful to make sure nothing else
gets assigned the same IP address on the network, otherwise both computers would
experience problems.

https://www.raspberrypi.org/documentation/remote-access/ssh/
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

 Option 1 is probably the easiest, although it assumes that your router includes such a
configuration feature. Usually, what you can do is connect the Raspberry Pi to the Router,
and then log into the router admin panel where it will show you what devices are connected,
and then present you with the option to pin an IP address somewhere.

 If you decide to use a static IP address for the Raspberry Pi, you should be careful not to
use a static IP address that is not within the DHCP lease range that the router can assign.
 Otherwise, there could be a case where the router accidentally assigns the same IP address
that your router is using to another computer on the network To determine the DHCP lease
range, you can likely find it somewhere inside the router's admin panel. Also, make sure that
the static IP that you use has the same subnet mask.

 For more reading on this topic, consult Q/A on Assigning a fixed IP address to a machine
in a DHCP network.

Making it Work Over The Internet
 In this section, we will discuss one method of using SSH to remotely log into another
computer from anywhere that you can access the internet. There are actually many different
ways to accomplish this task in general, but this article will focus on showing you a method
that involves setting up a proxy server with your favourite cloud provider, and then tunneling
the connection to the Raspberry Pi through the proxy server, and down to your Raspberry Pi
using SSH and port forwarding.

 However, before you rush off to set this up, I recommend that you make sure you know
what you're doing when setting up this kind of configuration. If you do something incorrectly,
you could be exposing you and your data to every hacker out there on the internet! This is
because the proxy (the one that you setup and control) will need to be accessible via a public
IP on the open internet.

 In order to get started with this technique, you will have to set up your own proxy server
using one of the many popular cloud providers. This is something you will have to pay for
each month, but a service like Amazon Web Services is fairly cheap if you go with a small
sized instance. It will likely cost you less than $5.00 per month to set one up. It doesn't have
to be powerful, it just needs to be a simple machine with network access and Linux installed.
 To give you an idea of what the setup will look like once you have it up and running, here is
an illustration:

https://serverfault.com/questions/906041/assigning-a-fixed-ip-address-to-a-machine-in-a-dhcp-network

 The setup described in the picture above is one where the laptop and the Raspberry Pi
are in different countries and have their own local LAN connections. Both of them connect to
the internet through their own router on their own LAN (not the same router as might be
suggested by the way the pictures were cropped). Both the Laptop and the Raspberry Pi will
set up their own SSH connection to the proxy. In this example, we will assume that the proxy
server has public IP address '123.123.123.123'.

 In order to achieve the final solution depicted above, you must create 3 SSH key pairs.
 The first is created on your Laptop with the public key added to '~/.ssh/authorized_keys' on
the proxy server ('my-proxy-keypair-laptop.pub'). The second is created on the Raspberry Pi
with the public key added to '~/.ssh/authorized_keys' on the proxy server ('my-proxy-keypair-
pi.pub'). The third is created on the Laptop with the public key added to
'~/.ssh/authorized_keys' on the Raspberry Pi ('my-first-keypair.pub'). If you need to refresh
your memory about how to set up SSH keypairs, see the article How To Set Up and
Distribute SSH Key Pairs.

 Let's review the three SSH commands that you'd need to run to set up a connection from
your laptop to the Raspberry Pi through the proxy if you did it manually every time you
wanted to set up the tunnel:

Represented by the Green arrow in the picture. (Run this command from Laptop)

Forward the Laptop's incomming traffic to port 2222 through the

tunnel and send it to 127.0.0.1:2223 once inside the proxy server.

ssh -L 2222:127.0.0.1:2223 -i ~/.ssh/my-proxy-keypair-laptop admin@123.123.123.123

Represented by the Red arrow in the picture. (Run this command from Raspberry

Pi)

SSH into to the proxy server, then forward any incoming traffic destined

for port 2223 (on the proxy server), down the tunnel, and send it to

http://blog.robertelder.org/setting-up-ssh-key-pairs/

port 22 on the Raspbery Pi (127.0.0.1:22)

ssh -R 2223:127.0.0.1:22 -i ~/.ssh/my-proxy-keypair-pi admin@123.123.123.123

Represented by the Yellow arrow in the picture. (Run this command from Laptop)

Open an SSH connection, but try to connect to 127.0.0.1:2222 with the

user 'pi'. Since the laptop's port 2222 is forwarded onto the proxy

servers's port 2223, and port 2223 on the proxy is forwarded back down

to the Raspberry Pi, this forwards the SSH connection request down to

the Raspberry pi.

ssh -p 2222 -i ~/.ssh/my-first-keypair pi@127.0.0.1

 Pay special attention to the red, green and yellow arrows in the picture. Each of them
corresponds to a different SSH command that is shown above. These three commands
show how you can connect to the Raspberry Pi over the internet by typing these commands
manually on the command-line, but what we want is a more automatic solution. We also
need to set up ssh configs that let us SSH directly onto the pi without having to manually set
up the dependent tunnel and port forwarding rules. Furthermore, we need a way to make
sure that the Raspberry Pi keeps trying to connect to the proxy server even if the power goes
out, the local internet goes down, or some other event occurs that disrupts connectivity. Here
is an equivalent ssh config file you can use on your laptop:

Host my-proxy

 HostName 123.123.123.123

 Port 22

 User admin

 IdentityFile ~/.ssh/my-proxy-keypair-laptop

 LocalForward 2222 127.0.0.1:2223

Host pi-backup

 HostName 127.0.0.1

 Port 2222

 User robert

 IdentityFile ~/.ssh/my-first-keypair

 ProxyJump my-proxy

 Putting this in your ~/.ssh/config file on your laptop will cause the SSH tunnel to the proxy
to be automatically set up whenever you try to ssh to 'pi-backup'. These two host entries will
take care of the first half of the green arrow and half of the yellow one. However, we still
have to do something on the Raspberry Pi to allow incoming connections that come through
the proxy server. For this, you can create a ~/.ssh/config rule on the Raspberry Pi:

Host my-proxy

 HostName 123.123.123.123

 User admin

 Port 22

 IdentityFile ~/.ssh/my-proxy-keypair-pi

 ServerAliveInterval 60

 The above SSH host rule will set up a connection to the proxy server, but we haven't
included the directive to make it actually listen for incoming connections from our laptop yet.
 For that part, we'll include it as part of a script that can run regularly to make sure that the
tunnel is active and working:

#!/bin/bash

LOCAL_SSH_PORT=22

REMOTE_SSH_PORT=2223

LOCAL_SSH_ADDRESS=127.0.0.1

REMOTE_SSH_ADDRESS=127.0.0.1

PROXY_HOST=my-proxy

SSH_COMMAND="ssh -q -N -R

${REMOTE_SSH_ADDRESS}:${REMOTE_SSH_PORT}:${LOCAL_SSH_ADDRESS}:${LOCAL_SSH_PORT}

${PROXY_HOST}"

LOG_FILE=~/.ssh/tunnel-log.log

Do a request to a site we own regularly so we can remotely check if the

Raspberry Pi is alive and what it's public IP is.

curl https://www.example.com/?rpi_checkin=true > /dev/null 2>&1

Check if there was a tunnel launched with the same command, otherwise, start one

if [$(pgrep -f -x "$SSH_COMMAND" | wc -l) -eq 0]; then

 $SSH_COMMAND &

 PREV_PID=$!

 echo "$(date): No tunnel was active: starting tunnel with pid: ${PREV_PID}." >>

"${LOG_FILE}"

fi

MATCHING_LISTENS=$(ssh ${PROXY_HOST} "netstat -an" | egrep

"tcp.*${REMOTE_SSH_ADDRESS}:${REMOTE_SSH_PORT}.*LISTEN")

LISTEN_CHECK_RTN=$?

Count listens using awk, wc -l won't work if there is no trailing newline.

NUM_MATCHING_LISTENS=$(echo -en "${MATCHING_LISTENS}" | awk 'END{print NR}')

Re-start the tunnel if we can't ssh into the remote and verify that the tunnel

is working

if [${LISTEN_CHECK_RTN} -ne 0] ; then

 pkill -f -x "$SSH_COMMAND"

 $SSH_COMMAND &

 PREV_PID=$!

 echo "$(date): Failed to check for active tunnel, restarted tunnel. New pid:

${PREV_PID}." >> "${LOG_FILE}"

elif [${NUM_MATCHING_LISTENS} -lt 1] ; then

 pkill -f -x "$SSH_COMMAND"

 $SSH_COMMAND &

 PREV_PID=$!

 echo "$(date): No matching listens found in proxy server, restarted tunnel. New

pid: ${PREV_PID}." >> "${LOG_FILE}"

else

 echo "$(date): Tunnel appears to be active on remote, do nothing." >>

"${LOG_FILE}"

fi

 You can put this script on the Raspberry Pi, and then run it from a cron job, or manually
on the command-line. Every time the script runs, it will check to make sure there is an active
SSH tunnel that is also forwarding traffic from 127.0.0.1:2223 on the proxy back down to port
22 on the Raspberry Pi. This script also does a couple other things like log what is
happening (which is useful for debugging purposes), and it also regularly pings some other
host that we control for reasons that will be explained later.

 One security related note about using the ssh -R flag is that this command can pose a
potential security risk: If you were to SSH into a remote host and then use -R to bind to a
port that was listening on a public network interface, you could end up forwarding traffic from
the open internet down to your Raspberry Pi. Because of this, the default SSH config usually
doesn't let you use the -R flag to bind to interfaces other than localhost. This can be
changed with the 'GatewayPorts' directive in /etc/ssh/sshd_config, but this is not
recommended for what we're doing here. If you want to be ultra safe, you should ensure that
you aren't listening on a public interface on the proxy server for the incomming Raspberry Pi
connections. However, because the proxy server is going to be somewhere in the cloud, it
will have to be listening on a public interface for SSH connections to the proxy server iteself!
 To mitigate the risk of hacking attempts on the proxy server, I would strongly recommend
setting up firewall rules to explicitly whitelist both your own IP address, and the IP address of
where the Raspberry Pi is. What happens if your IP changes though? Well, you'll just have
to update the firewall rule, or losen the security by only allowing IP addresses from a larger
address range that is guaranteed to be on your ISP's network, but not open to the entire
internet. When the IP address of the Raspberry Pi changes, you won't be present to check
the IP address, so that's why the script listed above includes an 'rpi_checkin' curl request. If

https://www.example.com/?

the Raspberry Pi address changes, you can check your logs on a simple web server that you
set up somewhere (for example on the proxy server itself), and then see what IP it's talking to
you from and white-list that.

How to Set Up A Proxy Server?
 I haven't yet explained how to set up your proxy server if you decide you need to connect
to your Raspberry Pi over the internet. The exact solution will depend on the cloud provider
you use, but if you'd like an explanation of how to launch a simple server on Amazon Web
Services, you can check out the guide on Amazon Cloud Servers For Beginners: Console VS
Command-Line. This guide explains how to launch servers from the web interface and the
command-line. You'll only need to launch the server once, so you can follow the instructions
on how to launch a server through the web interface. You can ignore pretty much everything
about using the 'AWS Command Line Interface', and the section 'Launching An Amazon
Server Via The Command Line'. You should, however, follow the steps in the section
'Connecting To Your Server With SSH' to verify that you can actually connect to the server.
 This guide also shows you a bit of information about security groups in AWS, although you
should consider using a rule that restricts SSH access to 'My IP address' instead of '0.0.0.0/0'
as shown in the guide which would allow full public access to SSH login attempts.

Automation Using Cron
 Cron jobs are fast and easy way to automate various tasks on a Linux/Unix system. In
order to set up a cron job, you can open up the crontab editor and edit up your user's cron
file where you use a special syntax to describe what Linux command you want to run, and
when you want it to run. The first time you try to edit your crontab file, it will usually ask you
what editor you want to use. I would suggest using nano if you're not experienced with
command-line editors yet.

crontab -e

 Here is an example of a cron file that has a single entry that will run the script 'do-
backup.sh' once per day at 6:01pm:

Edit this file to introduce tasks to be run by cron.

Each task to run has to be defined through a single line

indicating with different fields when the task will be run

and what command to run for the task

To define the time you can provide concrete values for

minute (m), hour (h), day of month (dom), month (mon),

and day of week (dow) or use '*' in these fields (for 'any').#

Notice that tasks will be started based on the cron's system

daemon's notion of time and timezones.

Output of the crontab jobs (including errors) is sent through

email to the user the crontab file belongs to (unless redirected).

For example, you can run a backup of all your user accounts

at 5 a.m every week with:

0 5 * * 1 tar -zcf /var/backups/home.tgz /home/

For more information see the manual pages of crontab(5) and cron(8)

m h dom mon dow command

1 18 * * * /home/robert/do-backup.sh

 The lines that start with '#' are just comments.

 For the actual backup script, you can use something like this:

http://blog.robertelder.org/amazon-cloud-servers-for-beginners-console-command-line/

#!/bin/bash

cd ~/my-repo

git push pi-backup master

 Just replace the directory name, the remote and the branch name with whatever git repo
you can to push.

 The syntax for cron jobs is easy to forget, and it can also get more complicated. A really
good site for remembering cron syntax can be found on https://crontab.guru/.

 You can also use a cron job to regularly run the script provided in the section 'Making it
Work Over The Internet' to make sure that the Raspberry Pi will regularly make sure that the
remote connection tunnel is always listening for new SSH connections even if the tunnel
dies, the power reset, or something else breaks the connection. Assuming that you put the
script inside a file called '~/connection-script.sh' you could do:

5 * * * * ~/connection-script.sh

 Which will run the connection keep-alive script every hour, 5 minutes after the hour.

 Another use for cron is to create a rule to periodically install updates, although there is
also an automatic updates feature that may be better suited to this purpose.

Flash Storage Issues
 A very common problem experienced by people who use digital cameras, the Raspberry
Pi, or USB flash drives is flash memory corruption. There are several contributing factors
that can lead to flash memory corruption, but one of the most important is that most
consumer flash memory is just poorly designed and manufactured. As of writing this article,
you can pick up 16GiB of flash memory at an office supply store for about $10. These cheap
consumer SD cards are often not well designed or manufactured and it is actually quite
common for them to fail. Industrial SD cards, such as those you can purchase from Digikey
are more reliable, but they can be extremely expensive especially for the larger capacity
ones.

 Before diving into the details of what can cause 'flash corruption', it's important to
distinguish between two different types of 'corruption' that can occur. The following two terms
have been coined mainly just for use in this article so they aren't universal, but let's divide up
the types of flash 'corruption' you can experience into soft corruption and hard corruption.

 Soft Corruption is meant to describe 'software' based corruption of the information
stored on the device without any physical issue with the device itself. In this type of
corruption, your data may be lost of damaged, but you can likely re-format the device and it
will work as good as new again. For example, you can sometimes end up with 'soft
corruption' if you copy something to a flash drive, and then quickly pull out the flash device
before it has finished writing, or without doing the 'safely remove' feature. In this case, when
you try to read the drive again, it might say you need to format it, or the files may not open.
 In this case you can often format the device and use it again to store files just fine. With soft
corruption, you may be able to use various software tools to read all valid and invalid data
from the media and then perform manual steps to reconstruct the filesystem structure. This
job is often performed by data recovery specialists, and it can be very time consuming or
expensive.

 Hard Corruption is meant to describe 'hardware' based corruption (permanent physical
effects) that prevent the flash device from reliably storing information. With hard corruption,
you can expect your data to be lost or damaged, and any kind of formatting or software-
based repair tool won't have any hope of making the device reliable again. Hard corruption

https://crontab.guru/
https://wiki.debian.org/UnattendedUpgrades
https://www.digikey.com/products/en?keywords=flash%20memory

of flash devices will occur naturally over time with repeated write cycles as the electrostatic
mechanisms used to actually 'store' and represent data in the device become more and more
noisy. Other forms of hard corruption could be things like electrical shorts that damage the
silicon chip inside the SD card, or physical changes to the memory cells in the chip that result
from intense static electricity discharge.

 Cheap flash memory has been known to sometimes experience soft corruption even with
very specific write sequences that you might encounter from heavy Raspberry Pi use. This
can be because of poor programming and testing on the part of the SD card manufacturer
who may only test their firmware for usage cases that involve only the most common and
predictable write patterns. They may assume that most people using the memory will be
doing things like taking photos or video with a digital camera. These trivial test cases are
enough to cover the most common uses of consumer memory and are therefore 'good
enough' to be able to sell the product.

Common Causes of Flash Memory Corruption
 In addition to cheap memory being to blame, there are number of other contributing
factors and many of them have to do with not having a stable power supply. To summarize, a
list of many problems that can lead to corrupted flash memory are:

Removing the flash media from the Raspberry Pi/Camera/Computer while it is running
without safely unmounting it, or using the 'remove safely' feature.
Buying the cheapest SD card you can find on eBay.
Power outages, brownouts or voltage surges.
Using a poor quality USB wall wart adapter. See YouTube search for 'usb adapter
teardown'.
Using a USB cable with wires that are too thin or don't make proper contact when
plugged in (causing high wire resistance and voltage drop).
Using a good quality USB cable and adapter that has an inadequate current rating for
your use case (ex. using a 1A adapter when 2A is required to run the Pi, + camera +
HD during 100% CPU usage).
Using extremely high-density flash which is often more prone to failure than low-density
flash.
Using flash memory which, internally, does not have mechanisms (such as write-ahead
logging or transactions) to recover from power loss or power sag.
Electrostatic discharge (static electricity shocks).
Writing/rewriting to the flash memory too many times.

 Many of the power related failure cases described above are likely to cause soft
corruption where the data will be lost or damaged, but the flash media can often be used
again after a simple re-formatting. The reason for this is that the 'corruption' can manifest
itself in a few bits of information that describe the layout of files on the flash device, rather
than the actual data you intend to store. When a device is 'formatted' with a filesystem,
various entries are written to the device which describe things like: how many files there are,
the start and end of each file, the length of filenames, directory structure, etc. If you power
off a poor-quality flash device that doesn't expect to be interrupted in the middle of changing
the filesystem structure, it could end up with an incomplete listing of files that doesn't make
any sense. Then, whatever device tries to read it will notice that the filesystem says things
that don't make sense, so your OS will say: "I don't know what to do with this directory that
claims to have 7573259375438759843758437597435843543 files in it (that's impossible), so
I'm just going to suggest that you format the flash device instead and not even bother to try
and figure out what is wrong.".

 Another effect that can contribute to soft corruption is that your Raspberry Pi, Camera, or
other device, usually caches writes by holding them in some other part of memory before
writing large sections to the flash media all at once. The programming that actually writes
data from the Pi, camera, etc. might do 'writes' one byte at a time. If the OS actually did

https://www.youtube.com/results?search_query=usb+adapter+teardown

writes to the flash media one byte at a time, this would be very slow and wear out the flash
much faster. Instead, your OS will usually cache the writes in memory until there is enough
of them to bother writing one big chunk of data at once. The trouble is, if the OS is only half-
finished writing changes from the cache to the flash storage and you then power off the
device, the other half of un-written cached data that was in memory is now lost. Even worse,
the half that was written probably doesn't make sense and can contribute to corrupted
filesystem structures.

 It's also worth pointing out that you can encounter 'soft' corruption that is technically still
just bits flipped in software states, but still have what most consumers would consider 'hard'
corruption. This is because along with your data, the manufacturer needs to program the
flash storage with small computer programs and data structures that only they have the
expertise to work with (flash memory actually contains a small CPU with its own software!).
 If you can find out what tools and processes the manufacturer uses internally, you might
have a shot, but if a bit gets flipped inside the flash memory's internal firmware, some internal
data structure, or an error correction algorithm code, then you're probably going to have a
tough time fixing this unless you work for the company who makes them. It's worth
mentioning that one of the suggestions above about not buying cheap flash memory from
eBay is relevant here: Some of the super cheap '1TB' memory cards you buy are actually
much smaller (512MB for example) cards where some of the internal data structures have
been updated to simply report some incredibly huge partition size instead of the real size.
 When you plug them into a computer, it will say the actual size is '1TB' because it gets this
size information by asking for it from the SD card. When the card has been purposefully re-
programmed to lie about how large it is, you can make it say any size you want! If you're
interested in this topic, I suggest reading On Hacking MicroSD Cards.

Solutions To Flash Memory Corruption
 In order to mitigate these problems, you should consider doing the following:

Make sure you always unmount ('safely remove') your flash media before physically
removing it.
If you have a choice between buying high-density flash (high GB/$) and low-density
flash (low GB/$) for the same amount of money, pick the lower density one. You'll get
less 'storage' per dollar, but the integrity of the flash per bit is likely to be higher.
Try not to buy cheap consumer grade flash memory.
Become aware of approximately how many amps your device will consume with
specific consideration to current spikes that can happen when it needs to do a lot of
work quickly. For a Raspberry Pi, you should consider how many peripherals are
attached to it. Make sure you get a wall wart adapter that is rated for the max
amperage you plan to use.
If you suspect that you're close the current limit that your wall adapter supports, avoid
doing workloads that max out the CPU at 100%, or activate multiple peripherals at
once.
Minimize the number of writes to your flash to maximize lifetime. For a Raspberry Pi,
you should consider doing as much work in memory, without touching disk, as possible.
If you have cheap consumer flash, try not to create high random read/write workloads,
or unusual read/write patterns.
Avoid static electricity discharges on the pins of the flash memory, especially on the
pins that are used to transfer data.

 Many of the internal details of the flash memory features and functionality (such as
density, power outage recovery, programming quality) are not things you will be able to easily
discover for most pieces of cheap consumer flash memory since they are often 'hidden' and
proprietary. It is reasonable to suggest that they may even change between different batches
of the same product under the same model number from a given manufacturer.

https://www.bunniestudios.com/blog/?p=3554

 If you have a serious project that requires using flash memory, you should be sure to read
up on the difference between SLC, MLC and TLC flash. Keep in mind that the difference
between SLC, MLC and TLC between different vendors is unlikely to be an apples to apples
comparison. Evaluating flash memory at this level of detail is more about the physics used in
the individual manufacturing and programming processes of the chip itself than any kind of
well standardized interpretation of what it means for something to be considered 'SLC'.

 Another important detail worth considering in how you make use of flash from a
programming perspective (and also how the flash may be organized internally) is the concept
of write amplification. Write amplification involves the consideration of how the number of
writes required to commit information can 'amplify' because of the need to update different
data structures, rearrange data, and also satisfy block-level operation constrains.

 I can personally vouch for one of the Raspberry Pi flash SD cards that came with the
'CanaKit' Raspberry Pi kit I purchased several years ago. This Raspberry Pi that has been
operating without any issues for several years now. Having said that, I don't know if it has
really experienced any power failure or brownout conditions and these would really be the
important stress test to consider. I have also used a slightly more expensive SD card
recently (AF8GUD3) for some of my newer Raspberry Pi project which I purchased from
DigiKey, and I haven't had any problems with this one.

 If you're interested in learning more about the details of flash memory corruption, an
advanced overview requires a detailed understanding of the physics involved in the individual
manufacturing techniques used for the particular model of memory you are using. Here is an
excellent talk on the subject: Tutorial: Why NAND Flash Breaks Down, from the The Linux
Foundation's YouTube channel.

Using An External USB Disk
 One way to avoid using flash completely is to use an external hard drive to host the data
that you're backing up. When you plug in most USB hard drives, you can usually find out
where they have mounted by using the 'df' command. You'll see output like this:

Filesystem 1K-blocks Used Available Use% Mounted on

udev 10200812 0 10200812 0% /dev

tmpfs 2046288 1204 2045084 1% /run

/dev/sda1 921923300 589451908 285570556 68% /

/dev/sdb1 3844607992 90140 3649152324 1% /mnt

 Where, in this case, the 'sdb1' entry is the external USB hard disk. In your case, the
device name will be different, but it will sometimes auto-mount to '/mnt'. If you don't see your
external USB in the output of 'df', then it might not be mounted. In order to mount it, you'll
need to use a tool like 'fdisk' which can list off all storage devices, even ones that are not
mounted. Explaining fdisk is beyond the scope of this article, but if you do end up using it
just make sure you read the documentation. Fdisk is able to modify partition tables of your
storage devices, and if you accidentally edit a partition table of one of your storage
devices, you could lose all your data!. After you find out which storage device is your
USB disk, you can use the 'mount' command to manually mount it.

 However, there is a problem with using the 'mount' command to manually mount the USB
disk: You may need to manually re-mount it every time you reboot the Raspberry Pi,
otherwise, when your script tries to push data to a git repo stored on the disk that isn't
mounted, it will fail.

 You can fix this problem by editing the '/etc/fstab' file and instructing it to auto-mount the
USB disk every time the Raspberry Pi starts. One draw-back of editing the fstab file is that,
by default, it will interrupt the boot process if the disk is not present when it tries to mount.
 This makes sense when for a server with an internal hard disk, but for a removable USB

https://en.wikipedia.org/wiki/Multi-level_cell
https://en.wikipedia.org/wiki/Write_amplification
https://www.digikey.ca/product-detail/en/atp-electronics-inc/AF8GUD3-OEM/AF8GUD3-OEM-ND/5022340
https://www.youtube.com/watch?v=VajB8vCsZ3s

drive that you may take out every once in a while, it can be annoying. Therefore, you can
use a special 'nofail' option in the fstab entry to prevent it from hanging up the boot process:

UUID=1234XXXX-AAAA-BBBB-CCCC-DDDDEEEEFFFF /mnt-my-USB ext4 defaults,nofail 0 0

 Also, be very careful when editing your fstab file, and make sure you know what you're
doing. If you accidentally switch where your disks are mounted or break your boot process, it
may cause mistakes that lead to data loss.

 Finally, in order to add these entries in a way that is consistent under different race
conditions from which device is detected first, use the UUID based method of identifying
devices. You can find the UUIDs of devices with the 'blkid' command:

blkid /dev/sda1

Various Troubleshooting
 If you encounter trouble getting your SSH connections to work, especially when using
tunneling through the proxy server, a very useful command to run is:

netstat -an

 You may want to pipe the result of this command into less so you can look at the result
easier (press 'q' to exit):

netstat -an | less

 The results of running this command will look something like this:

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

tcp 0 88 123.123.123.123:22 124.124.124.124:52032 ESTABLISHED

tcp6 0 0 :::22 :::* LISTEN

Active UNIX domain sockets (servers and established)

...

 The example output above is what it looks like when I am SSH'ed into one of my servers.
 Pay special attention to the port numbers and states of each of the connections. In the
above output, we can see that the first entry is 'tcp' (aka IPV4 TCP) and is listening for new
connections from packets that have a destination port of 22, and are destined for any
interface (0.0.0.0:22). Furthermore, we are listening for connections from any IP with any
source port.

 In the second entry, we see that there is an ESTABLISHED from my laptop which has IP
124.124.124.124 originating from port 52032 on my laptop (124.124.124.124:52032). This
connection is sending packets to the server at 123.123.123.123 to port 22 (no surprise
because that's the port for SSH connections).

 In the third entry we see another listen socket for 'tcp6' which just means it is also
listening for IPV6 connections too. In the above output, there are not remote forwarded
tunnels set up, and you'll see more entries when there are. It may take you a while to get
used to reading this output, but eventually you'll be able to glance at it and tell what is
connected, what's waiting for connections, and what is unrelated.

 Another thing you should do if you're having troubling setting up your SSH connection is
use verbose mode when invoking SSH itself. You can enable full verbose mode with the '-
vvv-' flag:

ssh -vvv pi-backup

 Here is an example of the kind of output you might see:

robert@computer:~$ ssh -vvv pi-backup

openSSH-10.3 Ubuntu-ubuntu0.4, OpenSSL 1.1.3e 21 Nov 2009

debug1: Reading configuration data /home/robert/.ssh/config

debug1: /home/robert/.ssh/config line 3: Applying options for pi-backup

debug1: Reading configuration data /etc/ssh/ssh_config

debug1: /etc/ssh/ssh_config line 11: Applying options for *

...

 Depending on what your problem is, you may be able to glean some useful information
from the output that can help solve your problem.

Conclusion
 In this article we've discussed many topics related to hosting a backup solution using your
Raspberry Pi or spare laptop. This includes simple situations that only require
communication with a Raspberry Pi hosted on the same LAN, but also more complex
situations that require the connection to go over the internet. Concerns like flash memory
corruption were discussed with the conclusion that you should avoid buying the absolute rock
bottom cheapest flash memory, and also make sure you use a good power supply. A method
of automating the backup 'push' operation was discussed that involves using cron jobs.

© 2019 Robert Elder Software Inc.

https://twitter.com/RobertElderSoft
https://github.com/RobertElderSoftware
https://www.facebook.com/RobertElderSoftware
https://www.linkedin.com/company/13999052
https://www.instagram.com/roberteldersoftware/
https://www.patreon.com/RobertElderSoftware

